- Вивчено трикутник Рьоло (рівновісний контур) і його складене обертання біля двох центрів. Теоретично розраховані кутові швидкості обертання б, в трикутника Рьоло коло центра описаного навколо нього кола (б) і іншого довільно обраного центра (в), що дозволяють трикутнику окреслювати фігури, близькі за формою до правильних багатокутників. Визначено погрішності розмірів багатокутників, що окреслюються.
- На підставі виведеної залежності між швидкостями б, в, числом граней трикутника Рьоло і багатокутника, що окреслюється, показана можливість окреслення будь-яких правильних n-кутників шляхом обер-тання зі швидкостями б і в будь-якого m-кутника за умови n > m > 2.
- Запропоновано з практичною метою замість трикутника Рьоло використовувати сочевицеподібний контур (m = 2). Інструменти та деталі, що риси б контур сочевиці, простіше було б виготовити, тому що вони б риси меншу вагу, дві замість трьох криволінійних поверхонь, що обробляються, і, як наслідок, були б дешевші.
- Отримані формули, які дозволяють обчислити координати довільно обраної точки контуру трикутника Рьоло в процесі його складеного обертання навколо двох центрів з окресленням контурів будь-яких n-кутників (n > 3).
- Теоретичним шляхом отримані формули, що визначають необхідні радіуси кривини сторін трикутника Рьоло (m=3) і соче-вицеподібного контура (m=2), які забезпечують прямолінійність сторін багатокутників, що окреслюються.
- 6. Надані приклади практичного використання трикутника Рьоло, заснованого на його властивості окреслювати правильні багатокутники при складеному обертанні, а також ефективно передавати моменти, що крутять, і самоцентруватися при контактах декількох деталей.
